工业伺服节能改造,关于工业园区节能降耗方案信息聚合页,专注于工业园区节能降耗方案:节能产品、设备、技术、方案等;详情致电:  4006-848-818
4006-848-818
更专业 更高效 更节能
节能改造关注问答
1、

电机电枢绕组损坏的测定

1.电枢绕组接地的检测

逐片用毫伏表检测。用低压直流电源(或电池)配合毫伏表来测出接地线圈。将毫伏表一端接于轴上,另一端接于换向片上,如毫伏表有偏转,则表示有接地故障,然后将毫伏表接换向片的另一端,依次移动,当表中指数为零时,则接于此片的线圈或换向片接地。短路测试器法。将电枢放在短路测试器上,再将毫伏表的一根引线放于换向器片上,另一根引线放于轴上,当毫伏表有读数时,则连接该片之线圈有接地处。

2.电枢绕组短路的测定

(1)电压降法。检查时,将有故障的电枢放在支架上,对相对两换向片间通入低压直流电,用直流毫伏表依次测量相邻两换向片间电压,若毫伏表读数呈周期性变化,表示接在换向片上的线圈是良好的;若读数突然变小或为零,则接于这两换向片间的线圈中就存在短路。对于四极的波绕组,由于绕组是经过两个线圈串联后再回到相邻的换向片上,若其中一个线圈发生短路时,接在相邻换向片上的毫伏表读数会降低近一半,便无法分辨是哪一个线圈短路,此时应将毫伏表跨界到距离相当一个换向器节距(Yk)的两个换向片上,即可只是出短路故障发生在哪个线圈上。

(2)毫伏表法。用一对探针将低压直流电加在相邻两个换向片间,再用另一对探针连接的直流毫伏表,测量其短路或接通的电动势,则电动势值小的一对换向片所连接的线圈,即是短路线圈。为防止损坏毫伏表,应先将接通电源的探针接到换向片上,之后再将毫伏表的探针接到换向片上;取下时顺序相反。

(3)短路测试器法。将电枢放在短路测试器上。当线圈或换向片有短路时,放在电枢槽口上的薄铁片即振动,并发出“吱吱”声。若为叠绕组时,薄铁片在两个槽口振动;若为波绕组时,薄铁片在2P个槽上振动。

3.电枢绕组开路的测定

毫伏表法。检查时,将电枢取出,将直流电源加到两相对的换向片上,毫伏表跨接在两相邻的换向片上。若毫伏表的读数突然升高,即表明接在该两换向片间的线圈开路。

短路测试器法。将电枢放在短路测试器上,以一只交流毫伏电压表检查上面两块换向片。转动电枢,继续检查相邻的换向片,也可逐次移动毫伏表的引线。当毫伏表无读数时,即表明接至该两相邻换向片的线圈开路。也可用一条导线代替毫伏表,去短接两个相邻的换向片。当导线端无火花时,即表明该处线圈开路。

4.电枢绕组错接的检测

毫伏表法。电枢绕组错接于嵌反,常发生在重绕的电枢上。在单波和双叠绕组嵌线过程中,最易发生引线端放错位置,即将换向器节距搞错,其中分个别线圈的换向器节距接错及换向器节距全部接错。可用毫伏表检查换向片间的电压来确定接错的部位,如间隔一个线圈的两个线圈所接换向片间毫伏表均出现2倍于正常偏转的指示,而中间那个线圈却产生反向电动势,则为十字反接。或者说在换向片3、4之间测量时,若毫伏表指针反转,其它各处指示均正常,则表明换向片3、4间接反,纠正即可。

指南针法。用指南针沿通电的电枢绕组依次移动,若移动过程中指南针方向突然反向,则表明该处线圈接反。当用毫伏表或指南针检测各换向片间电压,其变化不规则,时有时无或指南针方向变动不定,则表明换向器节距全部接错,应重新放置。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


2、

发电机节能运行技术浅析

一、发电机运行中功率因数过高或过低造成的危害

发电机额定功率因数过高实际上是指当发电机同时在额定有功功率和额定视在功率运行工况(一般在滞相方式)下运行时的功率因数值,同样的额定有功功率机组,如果其额定功率因数越低,则说明运行时带无功的能力相对较强,机组额定电流也增加,从而使造价增加。

一般发电机额定功率因数均为0.9左右。

发电机运行中,从理论上讲,在同样的机端电压下,如果在同样的有功出力下,功率因数越高,那么所发的无功越少,发电机电势就越低,发电机的静态运行稳定水平下降。

发电机运行中,如果要降低功率因数至额定值以下,则必须降低其有功出力,以使定子和转子电流不超限,既不经济,又不安全。这种运行方式往往在当系统发生事故,无功缺额较为严重,要求发电机减发有功增发无功时出现。

二、发电机定子冷却水系统与发电机经济运行的关系

发电机冷却水系统主要是向发电机的定子绕组和引出线不间断提供水源。其优点是水热容量大,有很高的导热性能和冷却能力,水的化学性能稳定,在高温下不会燃烧,调节也方便,冷却均匀等。

发电机定子的冷却水必须具有很高的工作可靠性,否则会使发电机组降低负荷运行,严重时危害发电机正常运行。因此,对冷却水的质量有较高的要求,很低的机械杂质,电导率不大于2vs/em、PH值在7~8之间、硬度不大于2vg当量/L、含氧量尽可能减少。

三、火力发电机增容改造有哪些途径

1、提高定子线及转子绕匝间等绝缘强度。经发电机绝缘鉴定,其机械性能和介电性能变坏,电气强度降低的发动机当需要更换上、下层定子线棒时(温度计算实验决定),可将定子线棒的绝缘材料由原B级绝缘改为F级,其线槽部换为绝缘用浸漆的适型材料,加强绝缘及黏结。线棒绝缘包扎采用以提高线棒的绝缘质量,提高转子集电环及引线、槽绝缘、排间绝缘、楔厂,垫条、大护环绝缘等。

2、交换定子线棒,增大铜线截面积。经发电机温升计算和实验,定转子绕组铁心温度裕度不够,以及为提高发电机效率、降低定子绕组的线电流密度、进一步降低定子铜耗,可更换定子全部上、下层定子线棒,参照引进技术同级电压绝缘厚度增大铜线截面积。

3、发电机加装铜屏蔽及管道水冷却,降低端部损耗,降低端部主要结构件温度。

4、其他有缺陷的部件改造。

四、提高氢冷发电机的某些参数可以提高发电机效率

氢气压力越高,氢气密度就越大,其导热能力就越高,因此,在发电机各部位温升不变的情况下,能够散发出更多的热量,发电机的效率就可以提高。特别是对氢内冷发动机效率更明显。

氢气的纯度过高,则发电机消耗的氢气量越大,越不经济。但是,氢气纯度过低,会因为含氢量减少而使混合气体的安全系数降低。因此,氢气的纯度按容积计算需保持在96%~98%,气体的混合物中含氧量不超过2%。

氢气的湿度是影响发电机绝缘的主要因素,氢气湿度越大,越使发电机绝缘强度降低,使发电机绝缘不达标,影响发电机正常运行,严重时使匝间短路而损坏发电机。

五、影响补氢率的主要因素

补氢率是指为维持氢冷发电机运行氢压需每天补充的氢量。

1、发电机内冷水系统泄漏,氢漏入内冷水中;

2、发电机密封油油压低、氢油分离设备失灵,氢进入油系统;

3、氢压表管堵塞或表计失灵;

4、发电机端盖、出线密封(密封母线)不良;

5、氢系统管道、阀门、仪表接头等处外漏;

6、发电机氢系统补氢阀等阀门不严,造成内漏。

六、降低补氢率的措施

1、大修后或进行消除漏氢缺陷工作的发电机,启动前应进行整体气密性实验,实验持续24h(特殊情况不少于12h)。气密性实验最大允许漏氢量应符合标准或生产厂家技术要求。

2、发电机实际漏氢量应每月定期测试一次。测试计算方法执行国家电力公司标准《汽轮发电机运行规程》(1999年版)。

3、用检漏仪器或其他方法查找漏氢点,设法消除。当密封母线内含氢量超过1%时,应立即停机查漏。当发电机轴承油系统或主油箱内氨气体积含量超过1%时,应立即停机查漏。当内冷水系统出现氨气时,应尽快安排停机处理。

4、保持发电机密封油油压高于氨压在规定运行范围内,否则应降低氨压运行。

5、发电机氨系统补氨阀等阀门不严造成内漏时,应设法消除。

七、低电压对经济和安全运行的危害

1、烧毁电电机。电压过低超过10%,将使电动机电流增大,线圈温度升高,严重时使机械设备停止运转或无法启动,甚至烧毁电动机;

2、灯发暗。电压降低5%,普通点灯的照度下降18%;电压下降10%,照度下降35%;电压降低20%。则日光灯无法启动;

3、增大线损。在输送一定电力时,电压降低,电流相应增大,引起线损增大;

4、降低电力系统的静态及暂态稳定性。由于电压降低,相应降低线路输送极限容量,因而降低了稳定性,电压过低可能发生电压崩溃事故;

5、发电机出力降低。如果电压降低超过5%,则发电机出力也要相应降低;

6、影响电压的稳定性。如果区域性无功补偿不足,无功的缺额只能由电压降低来补偿,导致无功缺额越来越大,电压越来越低,直至崩溃。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


3、

电机的能耗等级分为几级,能效划分标准

电机的能耗等级分为几级,能效划分标准

电机是各种设备的动力驱动设备,常常应用在化工厂,煤矿,冶金,公用设施等多个行业和领域,是用电量最大的耗电机械。为了响应国家十二五计划,和企业自身经济利益考虑,节约用电,减少成本,选择一款高效节能电机是十分重要的。

但是我们在购买电机是却不知道他们的能效是如何划分的。那个如何判断电机的能效等级对我们来说就显得困难起来,不过经过我们下面的讲解,我们就会明白防爆电机的能效是如何划分了。

电机能效标准的划分标准在不同的时期按照国家的标准是不一样的,依据不同国家的标准也是不同的。仅以我们国家来说,电机能效等级的划分也是随着时间的变化会变化的。2006年我国发布了GB_18613-2006_电动机能效限定值及能效等级评定的标准。


GB_18613-2006_电动机能效限定值及能效等级

但是到了2012年,随着我国发展与国际化的同步,我们国家又发不了GB_18613-2012_电动机能效限定值及能效等级判断的标准,如下表


GB_18613-2012_电动机能效限定值及能效等级

我们不难看出在某些型号上会有下表的情况


就拿现在节能防爆电机YBX3来说,在GB_18613-2006_电动机能效限定值及能效标准中是一级能效,但到了GB_18613-2012_电动机能效限定值及能效等级标准中是二级能效。而YB2系列带电机在GB_18613-2006_电动机能效限定值及能效等级评定的标准中是二级能效类电机,但是按照2012的电机能耗划分标准,就属于三级能耗防爆电机了,属于高耗能电机。当然随着科技的发展,对防爆电机节能的要求的提高,能效标准可能还会变化的,不同时期判断方法的能效等级因此会不一样的。

现在我们以我们国家最新能效标准来说,目前按照GB_18613-2012_电动机能效限定值及能效等级划分标准要求,防爆电机的能效等级划分三级。其中一级能效是最节能的,二级能效防爆电机也是节能防爆电机,当然三级能效就不属于节能防爆电机了。当然在二级和二级以上的防爆电机(暂时一级能效三相异步防爆电动机国内还没有产品,YBX3是最佳选择)都是现在国家提倡使用的,有的地方国家会给予一定的政策补助。对于企业来说在节能用电上每年也会节约一大笔资金。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


4、

节能电机与普通电机的区别在哪里

高效节能电机采用新型电机设计、新工艺及新材料,通过降低电磁能、热能和机械能的损耗,提高输出效率。与普通电机相比,使用高效电机的节能效果非常明显,通常情况下效率可平均提高4%。重量基本相同。

高效节能电机是指通用普通型电动机具有高效率的电机。

高效节能电机特点:

1、节约能源、降低长期运行成本,非常适合纺织、风机、水泵、压缩机使用,靠节电一年可收回电机购置成本。

2、直接启动、或用变频器调速,可全面更换异步电机。

3、稀土永磁高效节能电机本身可比普通电机节约电能15℅以上。

4、电机功率因数接近1,提高电网品质因数,无需加功率因数补偿器。

5、电机电流小,节约输配电容量、延长系统整体运行寿命。



--------------------------------------------------


节能改造相关节能电机相关问题相关回答信息


5、

水泥厂电动机节能分析

目前,水泥行业的竞争非常激烈,但关键还是制造成本的竞争,而电动机电耗占成本30%,因此做好电动机的降耗增效工作就显得极为重要。所以,我们要从调速方式、电动机的选型、启动装置等方面入手等每个环节开展细致的工作,同时要大力应用新技术新成果,促进企业的节能降耗。

一、变频调速节能

1、风机、水泵上的变频调速节能

大部分水泥厂的一些设备尤其是一些大功率设备在生产过程中绝大部分时间都是不满负荷,在生产过程中都是通过调节挡风板或阀门的开启角度的机械调节方法来满足不同的用风(水)量,这种操作方式的缺点是:(1)电机及风机或水泵的转速高,负荷强度重,电能浪费严重;(2)设备运行的自动化程度相当低,几乎完全靠人工调节,调节精度差,控制不精确;(3)电气控制采用直接或降压起动,启动时电流对电网冲击大,需要的电源(电网)容量大,功率因素较低。(4)起动时机械冲击大,设备使用寿命低;(5)噪声大,粉尘污染严重等。在水泥厂主要有生料磨排风机,窑尾废气处理风机,罗茨风机,水泥磨排风机,煤磨风机、蓖冷机风机、选粉机、循环水泵、给水泵等。由于变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:n=60f(1-s)/p,(式中n、f、s、p分别表示转速、输入频率、电机转差率、电机磁极对数);通过改变电动机工作电源频率达到改变电机转速的目的。通过流体力学的基本定律可知:风机、泵类设备均属平方转矩负载,其转速n与流量Q,压力H以及轴功率P具有如下关系:Q∝n,H∝n2,P∝n3;即,流量与转速成正比,压力与转速的平方成正比,轴功率与转速的立方成正比。如下图示为压力H-流量Q曲线特性图:

n1-代表电机在额定转速运行时的特性;

n2-代表电机降速运行在n2转速时的特性;

R1-代表风机、泵类管路阻力最小时的阻力特性;

R2-代表风机、泵类管路阻力增大到某一数组时的阻力特性。

风机、泵类在管路特性曲线R1工作时,工况点为A,其流量压力分别为Q1、H1,此时风机、泵类所需的功率正比于H1与Q1的乘积,即正比于AH1OQ1的面积。由于工艺要求需减小流量到Q2,实际上通过增加管网管阻,使风机、泵类的工作点移到R2上的B点,压力增大到H2,这时风机、泵类所需的功率正比于H2与Q2的乘积,即正比于BH2OQ2的面积。显然风机、泵类所需的功率增大了。这种调节方式控制虽然简单、但功率消耗大,不利于节能,是以高运行成本换取简单控制方式。若采用变频调速,风机转速由n1下降到n2,这时工作点由A点移到C点,流量仍是Q2,压力由H1降到H3,这时变频调速后风机所需的功率正比于H3与Q2的乘积,即正比于CH3OQ2的面积,由图可见功率的减少是明显的。

也就是当风机水泵的转速下降10%时,电机消耗功率下降27.1%.所以风机水泵采用变频调速节能效果非常明显。

2、用变频调速取代传统调速

传统调速所采用的晶闸管串级调速、直流调速、电磁滑差调速、液力耦合器调速和异步电动机的变级调速等存在传动效率低、难维护等缺点,而变频调速结构简单,稳定可靠,调速精度高,启动转矩大,调速范围广。所以采用变频调速在提高机械的传动效率就可节能20%左右。

3、变频在空气压缩机上应用

空压机恒压供气使用变频器与压力控制构成闭环控制系统,使压力波动减少1.5%,降低噪音、减少振动。保证设备长期稳定运行,从而减少了设备维护工作量,延长了设备使用寿命。用变频器后,空压机可在任何压力下随意起动,打破了以前不允许带压起动的规定,起动电流也较以前大大降低。通过使用变频器后的实例,多数压缩机节电率约在20%左右。

总之:采用变频器控制将有以下诸多优点:

(1)、采用变频器控制电机的转速,取消挡板调节,降低了设备的故障率,节电效果显着;

(2)、采用变频器控制电机,实现了电机的软启动,延长了设备的使用寿命,避免了对电网的冲击;

(3)、电机在低于额定转速的状态下运行,减少了噪声对环境的影响;

(4)、具有过载、过压、过流、欠压、电源缺相等自动保护功能;

(5)、提高产品质量及产量。

实践证明,变频改造具有显着的节电效果,是一种理想的调速控制方式。既提高了设备效率,又满足了生产工艺要求,并且还大大减少了设备维护、维修费用,另外当采用变频调速时,由于变频装置内的直流电抗器能很好的改善功率因数,也可以为电网节约容量。直接和间接经济效益十分明显。[page]

二、电动机的功率因数补偿

笼型电动机通常采用并联电容器就地补偿的方法。绕线式电动机可采用进相机补偿的方式。进相机补偿分旋转式和静止式2种,由于旋转式进相机结构上的缺陷,目前逐步被静止式进相机所代替。

合理选用电动机类型

Y系列电动机是全国统一设计的新系列产品,是国内目前较先进的三相异步电动机。20世纪80年代中期即在全国推广应用。其优点是效率高、节能、启动性能好。而目前国内许多老水泥企业仍大量采用JO2系列电动机,相比来说Y系列比JO2系列电动机效率提高了0.413%。因此用Y系列电动机取代旧式电动机势在必行。

选择电动机类型除了满足拖动功能外,还应考虑经济运行性能。对于年运行时间大于3000h,负载率大于50%的场合,应选择YX系列高效率的三相异步电动机。与Y系列相比,其效率平均高3%,损耗降低20%~30%,虽然价格高于Y系列电动机,但从长期运行考虑,经济性还是明显的。

同步电动机能提高企业电网的功率因数,降低供电线路损耗,但控制系统繁杂,价格较高。

合理选用电动机的额定容量

国家对三相异步电动机3个运行区域作了如下规定:负载率在70%~100%之问为经济运行区;负载率在40%~70%之间为一般运行区;负载率在40%以下为非经济运行区。若电动机容量选得过大,虽然能保证设备的正常运行,但不仅增加了投资,而且它的效率和功率因数也都很低,造成电力的浪费。因此考虑到既能满足水泥厂设备运行需要,又能使其尽可能地提高效率,水泥企业一般负载率保持在60%~l00%较为理想。对于负载率小于40%的三角形接法电动机可改为星型接法,以提高其效率。

同步电动机能提高企业电网的功率因数,降低供电线路损耗,但控制系统繁杂,价格较高。随着异步电动机制造水平的提高,新设备已很少采用。

三、电动机启动和运行形式

低压笼型大中型电动机

若采用全压直接启动方式,这要求电力系统有足够大的容量,而实际运行时,电力系统负载率很低,影响供电效率,并且用直接启动方式易烧毁开关、电动机,影响电网其他设备的运行,往往为了尽量减少电动机启动次数而宁愿让电动机空转而不停车,造成大量浪费。此类电动机可以用电动机软启动器启动。电动机软启动器是采用大功率晶闸管模块作为主回路的开关元件,通过控制它的导通角以实现软特性的电压爬升。它具有对电网无过大冲击,对机械传动系统(齿轮及轴连接器)震动小,启动转矩平滑稳定等诸多优点。启动电流在2.5~3.5倍额定电流之间可调,启动时间可调。

高压笼型电动机

传统的启动方式多选用电抗器、自耦变压器等,但这些启动设备都不能很好地满足启动要求,很难获得理想的启动参数。目前出品的热变电阻软启动装置能较好地满足启动要求。热变电阻器由具有负温度系数的电阻材料制成,电阻器串于电动机定子回路,当电动机启动、电阻体通过启动电流时,其温度升高,而阻值随之减小,从而使电动机端电压逐步升高,启动转矩逐步增加,以实现电动机的平稳启动。根据电动机参数和负载要求的启动转矩,能方便地配置适当的启动电阻值获得最佳的启动参数,即在较小的启动电流下,获得足够大的启动转矩。

大型绕线型电动机

以前大多采用频敏变阻器启动,但其故障率太高。目前较为成熟的方式是采用液体变阻启动器。它是利用两极问的液体电阻,通过机械传动装置使极板的距离逐步接近,直至接触,达到串人转子回路中的电阻无级变小最后为零,实现电动机无冲击的平滑启动。其特点是启动电流小,对电网无冲击,热容量大,可连续启动5~10次,维护方便,使用可靠。目前我厂该类型电动机已全部采用液体变阻启动器。

中、小型绕线电动机

以前主要采用频敏电阻器和油浸电阻器启动,由于有滑环、碳刷、短路环等零件与继电器、交流接触器、频敏或油浸变阻器等电器元件组成的启动系统都安装在粉尘较大的生产现场,因此它具有故障率高、维修量大的缺点,经常影响设备的正常运行,而无刷无环启动器较好地解决了上述问题,它是一种启动平滑,不改变运行特性且不受粉尘干扰的启动设备。其一次启动电流限制在3.0~4.0Ⅰe之间,适合于11~600kW的高低压绕线型电动机。该启动器是利用频敏变阻器的原理,利用铁磁性材料的频感特性研制而成,安装在电动机转轴原来装集电环的位置,与转子同步旋转,省去了电动机的辅助启动装置。

成球供水系统

生料成球工序是影响水泥熟料烧结质量的关键工序之一,其中水、料比例直接影响成球好坏。应用变频器后能通过跟踪生料供给量对成球预加水泵的转速进行无级调速,从而实现全自动化的闭环控制,料水配合稳定,成球效果良好,大大提高水泥烧结质量。此系统改造主要为提高自动化程度和制造工艺水平考虑,由于功率较小省电效果还在其次。

生料均化给料系统

此系统用变频改造后,将所有送料口处的送料电机用变频器进行同步无机调速,等比例送料,提高均化效果,此点也是从制造工艺角度考虑。[page]

四、水泥选粉系统

水泥选粉系统的工作原理是根据所生产的水泥的标号的不同,调节选粉机和选粉风机的转速,从而选出不同细度的水泥制品。老式选粉机要调整风机轴上的扇叶的数量和角度,经过对比试验达到所要求的选粉细度;新式选粉系统分选粉机和选粉风机两部分,选粉机由滑差电机调速,选粉风机靠调节挡风板角度调节用风量。这两种系统都存在操作工艺复杂、调节精度差、浪费电能严重的缺点,特别是滑差点机不但费电,由于水泥制造环境粉尘严重,因此滑差头骨胀率特别高,维修困难。变频改造后,不管是老式系统还是新式系统,只要将电机调节到一个特定的转速就能选出所需要的细度的颗粒,在节约电能的同时还做到了连续化、自动化生产,既提高了劳动效率,又降低了劳动强度,综合效益明显。

五、立窑卸料系统

为使水泥烧结过程中加料、供风、卸料三平衡,立窑普遍采用滑差电机(电磁调速电机)做为盘塔式卸料装置的动力,该电机不但防护等级满足不了水泥生产现场环境的需要,而且在相同输出转速的条件下消耗的功率也比系列电机高出百分之二十左右,在降低转速时相差更多,因此采用变频调速系统代替滑差调速后,解决以上所诉的缺点,且调速性能远远高于滑差调速电机,在节电的同时维修费用也大大降低,在各行业得到普遍应用。

应用变频器对可以调速的电机进行控制,在节约大量电能的同时,还具有软起功能,同时降低了电机的起动电流和运行电流,降低整个电力系统和机械系统启动和工作时的负荷强度,延长了机械部件的使用寿命。另外对滑差电机的变频改造提高了电机的防护等级,减少了因环境恶劣而造成的电机故障率。

六、意外收获

由于变频器工作和启动时电流的下降,为其他设备的启动提供了必要的保证,无形中增加了工厂的电力容量,这对电网电压不稳和电力容量偏小的场合尤为有利。象天马水泥有限公司这样整体改造后,可省下200KVA的变压器容量,新上设备时变电所可暂不增容,可节省大量投资。

当然,经过变频改造后还应加强生产工艺方面的管理,再生产允许的条件下合理的调节电机的转速,以达到理想的节能结果。这有待于在以后的工作中加以不断的完善。

1在立窑罗茨风机上的应用

立窑煅烧熟料所耗的电能中,罗茨鼓风机的电耗一般占60%左右,随着电价的调整,电费在水泥生产成本中说占的比例越来越高。因此,降低鼓风机的能耗成为提高企业经济效益的重要一环。

对罗茨风机可由变频器改变风机的供电电源频率进行无级调速来调节风量,重庆地维水泥有限公司在1号窑132KW罗茨风机上安装变频器,节电率高达62。2%。吨熟料电耗由安装变频器前的15。22度下降到安装后的5。55度;河南焦作水泥厂在10000/吨水泥熟料旋窑生产线生料流态化系统55KW罗茨风机上安装了变频器后节电率高达73。2%,平均每日用电量由安装前的606度下降到安装后的162度,每日节电444度。

2在离心风机上的应用

有某些水泥厂是采用高压离心式风机进行供风,该种水泥窑的风量调节是通过风门开启度对风量进行调节。对离心风机的变频调速改造同样有巨大的节能潜力。这是因为离心式风机设备的流量与转速的成正比,压力与转速的平方成正比,功率与转速的立方成正比。因此在调节风量或流量时,如降低20%的风量或流量,功耗则会下降50%,但是必须注意,转速与压力是成平方关系,当转速下降20%时,压力则会下降60%,因此必须注意工艺要求的压力范围不能象罗茨风机那样,不用考虑转速与风压的关系。

3在立窑卸料机上的应用

立窑卸料机若采用滑差调速电机,其转速通常控制在300~1000rpm(工艺上根据窑的情况,对卸料速度进行控制的)。采用变频调速的方法取代滑差电机,经过多个厂家应用结果表明,平均节能达40%左右,这是因为滑差调速是一种耗能的低效调速方法。

由下列公式可知:

滑差电机主电机轴的输出功率:P0=KM0N0(P0表示输出功率,M0表示负载转速,N0表示电机转速,K为常数)

滑差头输出功率P1=KM0N1(P1表示输出功率,N1表示滑差头转速)

滑差头损耗功率:P=P0-P1=KM0(N0—N1)

由此可见,滑差电机的转速越低,浪费能源越大,而卸料机的转速通常在400rpm左右运行,因此改用变频调速的方法会有50~60%的节能效果。

5在预加水成球系统中的应用

目前,预加水成球技术在立窑水泥厂中应用已相当普遍。它在提高成球质量,改善煅烧操作条件,提高立窑熟料产量和质量方面取得了比较明显的效果。其结合微机双回路调节器,就能实现水料比例自动跟踪,自动调节,做到恒压供水。调节及时,极大地减轻了工人的劳动强度,同时也改善了成球质量,使预加水系统真正起到预湿成球的作用,为立窑生产出优质高产的熟料创造了条件。

针对上述问题,结合生料车间选粉机负荷转速不超过600r/min的特点,对选粉机电气部分进行变频调速技术改造。经实际测量,选粉机改造前,运行速度在594r/min时,输入电压385V,输入电流72A,功率因数0.82,故输入功率为40KW;改造后,运行速度在594r/min时,输入电压387V,输入电流18A,(热继电器也做了相应调整),功率因数0.92(变频器加装了直接电抗器)则输入功率为11KW。改造后一年中,没发生过任何故障,保证了系统的安全运行,大大减少了维护工作量和维修费用,而且节能效果十分显着。

变频器在水泥厂的应用还不止这些,比如说回转窑球磨机、卸料圆、盘给料机、双管绞刀裙、板喂料机调速皮带称喂、煤绞刀、蓖冷机等一切需交流调速的设备都可以采用变频调速器。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


6、

用单片机产生矩形波经放大电路放大后驱动电机

采煤机再制造工艺实践工作为今后采煤机的再制造以及煤机装备的循环利用打下了坚实的基础。控制模块设计与分析,硬件控制模块设计采用N沟道MOS管IRF540驱动,该电路功耗小,驱动能力较好,成本较低,在PWM输出端与驱动端之间加入了光电耦合器,使控制电路与驱动电路隔离,有效保护了控制装置。

PWM输出模块PWM相对线性控制具有节能、易控制、提高电机运行效率的特点,采用PWM电路控制电机。用单片机产生矩形波,经放大电路放大后驱动电机。该方案优点是不需要另搭外围电路,通过编程即可改变输出矩形波占空比,从而控制电机。PWM产生及占空比控制,使用单片机产生PWM时,本文先后采用了两种方法,一种是编写延时由直接输出,另一种是使用定时器,通过周期延拓的方式输出PWM波。但是IO口直接输出的方式在控制占空比时不够精确,因此而采用键盘控制时,使用了外部中断来控制占空比。

使用了三个独立键盘,分别控制占空比增加、占空比减小以及特定占空比(45°时的占空比)。使用单片机、步进电机验证了单片机控制模式方案设计,采用的测试仪器有示波器、数字万用表、秒表等测试设备。测试结果表明当加占空比键按下后,转动角度值变大;减占空比键按下后,转动角度值值变小。实验证明占空比控制非常重要,也证明了PWM波的频率对响应速度有很大影响,同时验证了方案的可行性,为微量注射泵控制系统设计具有一定的参考价值。




--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


7、

管道切割机中电机启动方式的介绍

管道切割机的控制系统中,人机界面选用MCGS嵌入式触摸屏作为组态控制画面显示器。制作组态时将每个组件设置内部属性与PLC信息采集通道建立联系。可实现的功能主要有:

1)动态显示托辊电机的转速,切割焊枪的位移。

2)通过手动触摸界面按钮控制托辊电机的转速,设置管道切割的长度,切割气体电磁阀的启闭状态。

3)PLC非正常工作时,报警灯将发出报警指示。

4)切管时间的设置。

切管机开始工作时,选择手动控制方式启动托辊电机,打开焊枪出气阀,按下点火控制按钮,此时PLC的内置定时器开始计时。切割完成后按下关阀控制按钮,同时PLC停止计时。添加好多段切管长度后,选择自动按键,进入自动加工过程。每次焊枪定位后,电磁阀自动开启,之后开始点火。切割时间由第一次手动操作界面时,PLC的计时长度决定。




--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


8、

实现土层受扰动信号的远程采集以及盾构机刀盘的多电机同步驱动

综合试验台的设备组成掘进机试验台主要分为两部分:土箱加载部分及盾构机本体部分。土箱加载部分对实际掘进土质状况进行模拟,盾构机本体部分用来完成掘进施工。综合试验台的底层信号掘进机试验台土箱加载部分的信号主要是由压力传感器与位移传感器组成。而且这两类信号都不是标准信号,需要进行前期信号处理,再进行远程传输。盾构机本体部分的信号,大多是标准信号,较容易采集。

监控系统的组成由于盾构机的控制都是由PLC来完成,为了保证系统的统一性,基于全集成控制的理念,系统组成如下:土箱加载部分和盾构机本体部分,各用一套PLC、各用两套上位监控软件;后台数据分析用服务器一台。本设计用Profinet与Profibus实现土层受扰动信号的远程采集,以及盾构机刀盘的多电机同步驱动。使用交换机可以把网络分成盾构机本体、土箱加载部分和数据库管理三个网段,将负荷分隔开来,使整个网络性能增强。

盾构机本体部分的开关量与模拟量信号,通过ET200S采集到现场总线Profibus;土箱加载部分的土层压力信号,通过信号放大处理由ET200M采集到现场总线Profinet;土箱加载部分的土层位移信号,经过信号处理,通过485转换器采集到现场总线Profibus。通过现场总线Profibus,实现以PLC为控制器、以S120为执行器的盾构机刀盘的同步驱动控制。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


9、

浅谈IDirve矢量控制四象限高压变频器


2.3.2、矢量控制算法

其矢量系统的控制系统框图为:

在基于转子磁场定向的矢量控制系统中,首先把电机三相电流等同于两相静止的α-β轴坐标系,然后再转换成旋转的D-Q轴坐标系,此时:

注:

并使D轴与转子磁通方向重合,此时转子磁通的Q轴分量为零,可以得到:

把此式带入上式,经过化简可以得到:

矢量控制的目的是为了改善转矩控制性能,而最终实施仍然是对定子电流的控制。借助于坐标变换,使各物理量从静止坐标系转换到同步旋转坐标系,站在同步旋转的坐标系上观察,电动机的各空间矢量都变成了静止矢量,在同步坐标系上的各空间矢量就都变成了直流量,可以根据上述转矩公式的几种形式,找到转矩和被控矢量的各分量之间的关系,实时地计算出转矩控制所需的被控矢量的各分量值——直流给定量。按这些给定量实时控制,就能达到直流电动机的控制性能。由于这些直流给定量在物理上是不存在的,是虚构的,因此,还必须再经过坐标的逆变换过程,从旋转坐标系回到静止坐标系,把上述的直流给定量变换成实际的交流给定量,在三相定子坐标系上对交流量进行控制,使其实际值等于给定值。在矢量变换的控制方法中,需用到静止和旋转的坐标系,以及矢量在各坐标系之间的变换,交流电机的矢量控制,需要把电机的ABC三相定子静止坐标系的电流Ia、Ib、Ic、变换成α和β两相静止坐标系(Clarke变换),也叫三相-二相变换,再从两相静止坐标系变换成同步旋转磁场定向坐标系(Park变换),等效成同步旋转坐标系下的直流电流Iq、Id(Id相当于直流电动机的励磁电流);Iq相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标逆变换(Park逆变换)(Clarke逆变换),实现对电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交解耦控制,实现低频大转矩能力。

IDrive矢量控制四象限变频器,可广泛应用于提升类负载、对转速控制精度及速度要求苛刻、要求低频大转矩等复杂工况,帮助用户进一步提高工艺自动化水平,节能减排,增加更多的经济收益。



--------------------------------------------------


节能改造相关电机拖动相关问题相关回答信息


友情链接友情链接